Bases of subalgebras of K〚x〛 and K[x]
نویسندگان
چکیده
Let f1, . . . , fs be formal power series (respectively polynomials) in the variable x. We study the semigroup of orders of the formal series in the algebra KJf1, . . . , fsK ⊆ KJxK (respectively the semigroup of degrees of polynomials in K[f1, . . . , fs] ⊆ K[x]). We give procedures to compute these semigroups and several applications. We prove in particular that the space curve parametrized by f1, . . . , fs has a flat deformation into a monomial curve.
منابع مشابه
On the maximal ideal space of extended polynomial and rational uniform algebras
Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کامل$k$-power centralizing and $k$-power skew-centralizing maps on triangular rings
Let $mathcal A$ and $mathcal B$ be unital rings, and $mathcal M$ be an $(mathcal A, mathcal B)$-bimodule, which is faithful as a left $mathcal A$-module and also as a right $mathcal B$-module. Let ${mathcal U}=mbox{rm Tri}(mathcal A, mathcal M, mathcal B)$ be the triangular ring and ${mathcal Z}({mathcal U})$ its center. Assume that $f:{mathcal U}rightarrow{mathcal U}$ is...
متن کاملCertain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 79 شماره
صفحات -
تاریخ انتشار 2017